ค้นหาข้อมูลเพิ่มเติมเกี่ยวกับ " gmat "

ข้อสอบ gmat

ข้อสอบ gmat
ข้อสอบ gmat

รายละเอียดของข้อสอบ GMAT

รายละเอียดของข้อสอบ GMAT
วันที่ 17 มีนาคม 2549
เรียบเรียงโดย: ดร.สิระ สุทธิคำ, สถาบัน Kendall Square
www.ToeflThailand.com

Graduate Management Admission Test หรือข้อสอบ GMAT เป็นข้อสอบที่ใช้วัดความสามารถของผู้ที่ต้องการเข้าศึกษาในระดับปริญญาโทและปริญญาเอกสาขาบริหารธุรกิจซึ่งรวมทั้ง MBA, M.S. Marketing, M.S. Finance, MIS (สำหรับสาขา MIS ของบางมหาวิทยาลัยอาจต้องใช้คะแนน GRE แทน), DBA, และ Ph.D. ด้านบริหารธุรกิจส่วนใหญ่ต้องใช้คะแนน GMAT ในการพิจารณารับนักศึกษา

ภาพรวมของข้อสอบ
เป็นการวัดความรู้ในการสื่อสารซึ่งรวมทั้งการอ่านและการเขียน, ทักษะการวิเคราะห์, และ ทักษะในการคำนวณ ที่จะสามารถใช้เป็นเครื่องชี้วัดความสำเร็จในการเรียนต่อทางด้านบริหารธุรกิจ
จาก website ของผู้ออกข้อสอบ
www.mba.com ระบุไว้ชัดเจนว่าข้อสอบ GMAT ไม่สามารถใช้วัดความสามารถในเรื่องต่อไปนี้

• ความรู้เฉพาะทางของธุรกิจเช่น มาตรฐานของบัญชี หรือ กฎหมายธุรกิจ
• ทักษะเฉพาะด้านของงาน (specific job skill) หรือเนื้อหาจากบทเรียนระดับปริญญาตรีด้านบัญชีและบริหาร
• คุณสมบัติอื่นของการเป็นนักธุรกิจที่ดีเช่นความมุ่งมั่น, ความคิดริเริ่มสร้างสรรค์, และความสามารถในการทำงานร่วมกับผู้อื่น

รูปแบบของข้อสอบและเวลา
ข้อสอบ GMAT ประกอบด้วยข้อสอบ 3 ส่วนคือ 1. การเขียน (Analytical Writing Assessment) 2. คณิตศาสตร์ (Quantitative) และ 3. ภาษาอังกฤษ (Verbal)

ข้อสอบการเขียน (AWA)
ข้อสอบ GMATเริ่มจากการทำข้อสอบเขียนก่อนเสมอ โดยจะมีรูปแบบของข้อสอบ 2 ลักษณะได้แก่ 1.การเขียนเพื่อแสดงความคิดเห็น (Issue) และ 2.การเขียนเพื่อแสดงวิจารณ์บทความ (Argument) ผู้เข้าสอบจะมีเวลา 30 นาทีต่อหนึ่ง essay

ข้อสอบคณิตศาสตร์ (Quantitative)
หลังจากการพักจากข้อสอบการเขียน 10 นาที ผู้เข้าสอบจะต้องทำโจทย์เลขแบบ multiple-choice จำนวน 37 ข้อโดยมีรูปแบบของข้อสอบสองลักษณะนั้นคือ 1. Problem Solving ~24 ข้อ และ 2. Data Sufficiency ~13 ข้อ โดยมีเวลาทำข้อสอบทั้งสิ้น 75 นาที คอมพิวเตอร์จะหยุดการทำงานทันทีเมื่อเวลาหมด

ข้อสอบภาษาอังกฤษ (Verbal)
หลังจากการพักจากข้อสอบคณิตศาสตร์แล้ว ผู้เข้าสอบสามารถพักหรือทำข้อสอบภาษาอังกฤษ (Verbal) ต่อเนื่องเลยได้ โดยข้อสอบส่วนนี้จะเป็นโจทย์แบบ multiple-choice จำนวน 41 ข้อโดยมีรูปแบบของข้อสอบสามลักษณะนั้นคือ 1. การอ่าน (Reading Comprehension) ~14 ข้อ 2. การวิเคราะห์ (Critical Reasoning) ~14 ข้อและ 3. ไวยกรณ์และการเขียน (Sentence Correction) ~13 ข้อ โดยมีเวลาทำข้อสอบทั้งสิ้น 75 นาที คอมพิวเตอร์จะหยุดการทำงานทันทีเมื่อเวลาหมด

http://toefl121.blogspot.com/

http://toeic1.blogspot.com/

ตัวอย่างข้อสอบGmat

Example:

The rise in negative attitudes toward foreigners indicate that the country is becoming less tolerant, and therefore that the opportunities are ripe for extremist groups to exploit the illegal immigration problem.

(A) indicate that the country is becoming less tolerant, and therefore that
(B) indicates that the country is becoming less tolerant, and therefore
(C) indicates that the country is becoming less tolerant, and therefore that
(D) indicates that the country is being less tolerant, and therefore
(E) indicates that the country is becoming less tolerant of and therefore that

Choice (A) has two flaws. First, the subject of the sentence the rise is singular, and therefore the verb indicate should not be plural. Second, the comma indicates that the sentence is made up of two independent clauses, but the relative pronoun that immediately following therefore forms a subordinate clause.

Choice (C) corrects the number of the verb, but retains the subordinating relative pronoun that.

Choice (D) corrects the number of the verb and eliminates the subordinating relative pronoun that. However, the verb being is less descriptive than the verb becoming: As negative attitudes toward foreigners increase, the country becomes correspondingly less tolerant. Being does not capture this notion of change.

Choice (E) corrects the verb's number, and by dropping the comma makes the subordination allowable. However, it introduces the preposition of which does not have an object: less tolerant of what?

Choice (B) both corrects the verb's number and removes the subordinating relative pronoun that. The answer is (B).

ศึกษาข้อมูลก่อนสอบ gmat

Friday, April 25, 2008

ตัวอย่างข้อสอบ gmat GMAT EXAM - GMAT TEST Data Sufficiency

ตัวอย่างข้อสอบ gmat

EXAM - GMAT TEST Data Sufficiency

Most people have much more difficulty with the Data Sufficiency problems than with the Standard Math problems. However, the mathematical knowledge and skill required to solve Data Sufficiency problems is no greater than that required to solve standard math problems. What makes Data Sufficiency problems appear harder at first is the complicated directions. But once you become familiar with the directions, you'll find these problems no harder than standard math problems. In fact, people usually become proficient more quickly on Data Sufficiency problems.

THE DIRECTIONS

The directions for Data Sufficiency questions are rather complicated. Before reading any further, take some time to learn the directions cold. Some of the wording in the directions below has been changed from the GMAT to make it clearer. You should never have to look at the instructions during the test.

Directions: Each of the following Data Sufficiency problems contains a question followed by two statements, numbered (1) and (2). You need not solve the problem; rather you must decide whether the information given is sufficient to solve the problem.

The correct answer to a question is

A if statement (1) ALONE is sufficient to answer the question but statement (2) alone is not sufficient;
B if statement (2) ALONE is sufficient to answer the question but statement (1) alone is not sufficient;
C if the two statements TAKEN TOGETHER are sufficient to answer the question, but NEITHER statement ALONE is sufficient;
D if EACH statement ALONE is sufficient to answer the question;
E if the two statements TAKEN TOGETHER are still NOT sufficient to answer the question.

Numbers: Only real numbers are used. That is, there are no complex numbers.

Drawings: The drawings are drawn to scale according to the information given in the question, but may conflict with the information given in statements (1) and (2).

You can assume that a line that appears straight is straight and that angle measures cannot be zero.

You can assume that the relative positions of points, angles, and objects are as shown.

All drawings lie in a plane unless stated otherwise.

Example:

In triangle ABC to the right, what is the value of y?

(1) AB = AC
(2) x = 30

Explanation: By statement (1), triangle ABC is isosceles. Hence, its base angles are equal: y = z. Since the angle sum of a triangle is 180 degrees, we get x + y + z = 180. Replacing z with y in this equation and then simplifying yields x + 2y = 180. Since statement (1) does not give a value for x, we cannot determine the value of y from statement (1) alone. By statement (2), x = 30. Hence, x + y + z = 180 becomes 30 + y + z = 180, or y + z = 150. Since statement (2) does not give a value for z, we cannot determine the value of y from statement (2) alone. However, using both statements in combination, we can find both x and z and therefore y. Hence, the answer is C.

Notice in the above example that the triangle appears to be a right triangle. However, that cannot be assumed: angle A may be 89 degrees or 91 degrees, we can't tell from the drawing. You must be very careful not to assume any more than what is explicitly given in a Data Sufficiency problem.

ELIMINATION

Data Sufficiency questions provide fertile ground for elimination. In fact, it is rare that you won't be able to eliminate some answer-choices. Remember, if you can eliminate at least one answer choice, the odds of gaining points by guessing are in your favor.

The following table summarizes how elimination functions with Data Sufficiency problems.

StatementChoices Eliminated
(1) is sufficientB, C, E
(1) is not sufficientA, D
(2) is sufficientA, C, E
(2) is not sufficientB, D
(1) is not sufficient and (2) is not sufficientA, B, D

Example 1: What is the 1st term in sequence S?

(1) The 3rd term of S is 4.
(2) The 2nd term of S is three times the 1st, and the 3rd term is four times the 2nd.

(1) is no help in finding the first term of S. For example, the following sequences each have 4 as their third term, yet they have different first terms:

0, 2, 4
-4, 0, 4

This eliminates choices A and D. Now, even if we are unable to solve this problem, we have significantly increased our chances of guessing correctly--from 1 in 5 to 1 in 3.

Turning to (2), we completely ignore the information in (1). Although (2) contains a lot of information, it also is not sufficient. For example, the following sequences each satisfy (2), yet they have different first terms:

1, 3, 12
3, 9, 36

This eliminates B, and our chances of guessing correctly have increased to 1 in 2.

Next, we consider (1) and (2) together. From (1), we know "the 3rd term of S is 4." From (2), we know "the 3rd term is four times the 2nd." This is equivalent to saying the 2nd term is 1/4 the 3rd term: (1/4)4 = 1. Further, from (2), we know "the 2nd term is three times the 1st." This is equivalent to saying the 1st term is 1/3 the 2nd term: (1/3)1 = 1/3. Hence, the first term of the sequence is fully determined: 1/3, 1, 4. The answer is C.

Example 2: In the figure to the right, what is the area of the triangle?

(1)
(2) x = 90

Recall that a triangle is a right triangle if and only if the square of the longest side is equal to the sum of the squares of the shorter sides (Pythagorean Theorem). Hence, (1) implies that the triangle is a right triangle. So the area of the triangle is (6)(8)/2. Note, there is no need to calculate the area--we just need to know that the area can be calculated. Hence, the answer is either A or D.

Turning to (2), we see immediately that we have a right triangle. Hence, again the area can be calculated. The answer is D.

Example 3: Is p <>

(1) p/3 < q/3
(2) -p + x > -q + x

Multiplying both sides of p/3 < q/3 by 3 yields p < q.

Hence, (1) is sufficient. As to (2), subtract x from both sides of -p + x > -q + x, which yields -p > -q.

Multiplying both sides of this inequality by -1, and recalling that multiplying both sides of an inequality by a negative number reverses the inequality, yields p < q.

Hence, (2) is also sufficient. The answer is D.

Example 4: If x is both the cube of an integer and between 2 and 200, what is the value of x?

(1) x is odd.
(2) x is the square of an integer.

Since x is both a cube and between 2 and 200, we are looking at the integers:


which reduce to

8, 27, 64, 125

Since there are two odd integers in this set, (1) is not sufficient to uniquely determine the value of x. This eliminates choices A and D.

Next, there is only one perfect square, 64, in the set. Hence, (2) is sufficient to determine the value of x. The answer is B.

Example 5: Is CAB a code word in language Q?

(1) ABC is the base word.
(2) If C immediately follows B, then C can be moved to the front of the code word to generate another word.

From (1), we cannot determine whether CAB is a code word since (1) gives no rule for generating another word from the base word. This eliminates A and D.

Turning to (2), we still cannot determine whether CAB is a code word since now we have no word to apply this rule to. This eliminates B.

However, if we consider (1) and (2) together, then we can determine whether CAB is a code word:

From (1), ABC is a code word.

From (2), the C in the code word ABC can be moved to the front of the word: CAB.

Hence, CAB is a code word and the answer is C.

UNWARRANTED ASSUMPTIONS

Be extra careful not to read any more into a statement than what is given.

• The main purpose of some difficult problems is to lure you into making an unwarranted assumption.

If you avoid the temptation, these problems can become routine.

Example 6: Did Incumbent I get over 50% of the vote?

(1) Challenger C got 49% of the vote.
(2) Incumbent I got 25,000 of the 100,000 votes cast.

If you did not make any unwarranted assumptions, you probably did not find this to be a hard problem. What makes a problem difficult is not necessarily its underlying complexity; rather a problem is classified as difficult if many people miss it. A problem may be simple yet contain a psychological trap that causes people to answer it incorrectly.

The above problem is difficult because many people subconsciously assume that there are only two candidates. They then figure that since the challenger received 49% of the vote the incumbent received 51% of the vote. This would be a valid deduction if C were the only challenger (You might ask, "What if some people voted for none-of-the-above?" But don't get carried away with finding exceptions. The writers of the GMAT would not set a trap that subtle). But we cannot assume that. There may be two or more challengers. Hence, (1) is insufficient.

Now, consider (2) alone. Since Incumbent I received 25,000 of the 100,000 votes cast, I necessarily received 25% of the vote. Hence, the answer to the question is "No, the incumbent did not receive over 50% of the vote." Therefore, (2) is sufficient to answer the question. The answer is B.

Note, some people have trouble with (2) because they feel that the question asks for a "yes" answer. But on Data Sufficiency questions, a "no" answer is just as valid as a "yes" answer. What we're looking for is a definite answer.

ตัวอย่างข้อสอบ gmat

No comments: